3.1528 \(\int \frac{1}{\sqrt{-3+b x} \sqrt{1+b x}} \, dx\)

Optimal. Leaf size=19 \[ \frac{2 \sinh ^{-1}\left (\frac{1}{2} \sqrt{b x-3}\right )}{b} \]

[Out]

(2*ArcSinh[Sqrt[-3 + b*x]/2])/b

________________________________________________________________________________________

Rubi [A]  time = 0.0049623, antiderivative size = 19, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {63, 215} \[ \frac{2 \sinh ^{-1}\left (\frac{1}{2} \sqrt{b x-3}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-3 + b*x]*Sqrt[1 + b*x]),x]

[Out]

(2*ArcSinh[Sqrt[-3 + b*x]/2])/b

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-3+b x} \sqrt{1+b x}} \, dx &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{4+x^2}} \, dx,x,\sqrt{-3+b x}\right )}{b}\\ &=\frac{2 \sinh ^{-1}\left (\frac{1}{2} \sqrt{-3+b x}\right )}{b}\\ \end{align*}

Mathematica [B]  time = 0.0100298, size = 39, normalized size = 2.05 \[ \frac{2 \sqrt{b x-3} \sin ^{-1}\left (\frac{1}{2} \sqrt{3-b x}\right )}{b \sqrt{3-b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-3 + b*x]*Sqrt[1 + b*x]),x]

[Out]

(2*Sqrt[-3 + b*x]*ArcSin[Sqrt[3 - b*x]/2])/(b*Sqrt[3 - b*x])

________________________________________________________________________________________

Maple [B]  time = 0.007, size = 66, normalized size = 3.5 \begin{align*}{\sqrt{ \left ( bx-3 \right ) \left ( bx+1 \right ) }\ln \left ({({b}^{2}x-b){\frac{1}{\sqrt{{b}^{2}}}}}+\sqrt{{b}^{2}{x}^{2}-2\,bx-3} \right ){\frac{1}{\sqrt{bx-3}}}{\frac{1}{\sqrt{bx+1}}}{\frac{1}{\sqrt{{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x-3)^(1/2)/(b*x+1)^(1/2),x)

[Out]

((b*x-3)*(b*x+1))^(1/2)/(b*x-3)^(1/2)/(b*x+1)^(1/2)*ln((b^2*x-b)/(b^2)^(1/2)+(b^2*x^2-2*b*x-3)^(1/2))/(b^2)^(1
/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x-3)^(1/2)/(b*x+1)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.97952, size = 65, normalized size = 3.42 \begin{align*} -\frac{\log \left (-b x + \sqrt{b x + 1} \sqrt{b x - 3} + 1\right )}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x-3)^(1/2)/(b*x+1)^(1/2),x, algorithm="fricas")

[Out]

-log(-b*x + sqrt(b*x + 1)*sqrt(b*x - 3) + 1)/b

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x - 3} \sqrt{b x + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x-3)**(1/2)/(b*x+1)**(1/2),x)

[Out]

Integral(1/(sqrt(b*x - 3)*sqrt(b*x + 1)), x)

________________________________________________________________________________________

Giac [A]  time = 1.15403, size = 32, normalized size = 1.68 \begin{align*} -\frac{2 \, \log \left ({\left | -\sqrt{b x + 1} + \sqrt{b x - 3} \right |}\right )}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x-3)^(1/2)/(b*x+1)^(1/2),x, algorithm="giac")

[Out]

-2*log(abs(-sqrt(b*x + 1) + sqrt(b*x - 3)))/b